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Abstract  

Background: Air pollution has been associated with adverse neurological and behavioral health 

effects in children and adults. Recent studies link air pollutant exposure to adverse 

neurodevelopmental outcomes, including increased risk for autism, cognitive decline, ischemic 

stroke, schizophrenia, and depression. 

Objectives: This study sought to investigate the mechanism(s) by which exposure to 

concentrated ambient ultrafine particles (CAPS) adversely influence central nervous system 

(CNS) development. 

Methods: C57Bl6/J mice were exposed to ultrafine (<100 nm) CAPS using the Harvard 

University Concentrated Ambient Particle System or filtered air postnatal days (PND) 4-7 and 

10-13 after which animals were euthanized either 24 hours or 40 days following cessation of 

exposure, and in another group of males at 270 days (ventricle area). Lateral ventricle area, glial 

activation, CNS cytokines, and monoamine and amino acid neurotransmitters were quantified. 

Results: CAPS induced ventriculomegaly (i.e., lateral ventricle dilation) preferentially in male 

mice that persisted through young adulthood. Additionally, CAPS-exposed males generally 

showed decreases in developmentally important CNS cytokines, whereas, in females, CAPS 

induced a neuroinflammatory response as indicated by increases in CNS cytokines. CAPS also 

induced changes in CNS neurotransmitters and glial activation across multiple brain regions in a 

sex-dependent manner and increases hippocampal glutamate in males. 

Conclusions: CAPS induces brain region- and sex-dependent alterations in cytokines and 

neurotransmitters in both males and females. Lateral ventricle dilation (i.e., ventriculomegaly) is 

only observed in CAPS-exposed male mice. Ventriculomegaly is a neuropathology that has been 

associated with poor neurodevelopmental outcome, autism, and schizophrenia. Our findings 
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suggest alteration of developmentally important neurochemicals and lateral ventricle dilation 

may be mechanistically related to observations linking ambient air pollutant exposure and 

adverse neurological/neurodevelopmental outcome in humans. 
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Introduction  

Air pollution has been associated with adverse neurological and behavioral health effects in 

children and adults. Recent epidemiological studies report associations between exposure to air 

pollutants and increased risk for autism (Becerra et al. 2013; Volk et al. 2011; Volk et al. 2013), 

cognitive decline (Power et al. 2011; Weuve et al. 2012), ischemic stroke (Lisabeth et al. 2008; 

Wellenius et al. 2012), schizophrenia (Pedersen et al. 2004), and depression (Lim et al. 2012). 

Exposures, in particular to ultrafine ambient particulate matter (UFP; <100 nm diameter), 

identified as potentially the most toxic constituent of air pollution (Oberdorster 2000), are 

pervasive and ubiquitous. Increases in neuroinflammation, oxidative stress, and glial activation 

have been identified as putative mechanisms by which air pollution exposures may impair the 

central nervous system (CNS) in adults (Block and Calderon-Garciduenas 2009), but such 

exposures in the context of early brain development, a time frame considered crucial to causation 

of autism, schizophrenia, and cognitive development remain largely unexplored. Given the 

potential public health importance of the reported epidemiological associations, it is imperative 

that the biological plausibility of such early developmental exposures to produce CNS 

dysfunction and disease be examined. Thus, we hypothesized that exposure of mice to UFP 

during early postnatal development, a period of rapid brain growth and differentiation, should 

adversely influence CNS development by mechanisms identified as subserving air pollutant 

effects. 
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Methods   

Animals, reagents, and exposures   

Eight week old male and female C57Bl6/J mice were purchased from Jackson Laboratories (Bar 

Harbor, ME) and allowed to acclimate in the housing room for 1 week prior to breeding. 

Monogamous pairs of mice were bred for 3 days, males were removed and dams remained singly 

housed with litters until weaning. Weanling mouse pups were exposed to concentrated ambient 

ultrafine particles (CAPS; <100 nm) using the Harvard University Concentrated Ambient 

Particle (HUCAPS) described in full elsewhere (Allen et al. 2013). Briefly, animals were 

exposed to ambient ultrafine particulates in real-time from PND 4-7 and 10-13 for 4 hours per 

day for 4 days per week between hours 0700 – 1200, times corresponding to peak vehicular 

traffic outside the intake valve of the instrumentation. Particulates were concentration 

approximately 10 fold over ambient outdoor air. The HUCAPS system is fitted with a size-

selective inlet and a high-volume (5,000 L/min) UFP concentrator that concentrates ambient 

particles. CAPS and filtered-air treated animals receive identical experimental manipulation. Due 

to presence of particle impactor in the HUCAPS system, animals in CAPS exposed chamber may 

be held at slightly higher negative pressure compared to filtered air; however, flow of CAPS-

enriched or filtered air is maintained constant in both chambers. Room air is filtered by HEPA 

filtration (99.99% effective) for filtered air exposed animals. Humidity and temperature in 

exposure chambers was maintained at 35-40% and 77-79ºF. Particulate mass concentration and 

counts are reported in Figure 1. Particle counts were obtained using a condensation particle 

counter (model 3022A; TSI, Shoreview, MN) and mass concentration was calculated using 

idealized particle density (1.5 g/cm3). Animals were euthanized by rapid decapitation due to 

known effect of anesthetics on neurochemistry on PND14 and PND55 to assess immediate and 
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persistent effects of CAPS on the developing and young adult CNS; an additional group of male 

brains from a separate exposure study obtained at PND270 was examined for ventricle area. 

Exposure characteristics for the PND270 exposure group were similar to those for PND14 and 

PND55 groups. Details are reported in other work (Allen et al. 2014a). To preclude litter specific 

effects, only a single pup per time point per sex per litter was used in the study. All mice used in 

this study were treated humanely and with regard for alleviation of suffering and approved by the 

University of Rochester IACUC. 

GFAP and IBA-1 immunostaining and image analysis      

Brains were extracted and placed into 4% paraformaldehyde for 24 hours and then placed in 30% 

sucrose until they sank. Brains were sectioned on a freezing microtome (Microm) at 40 µm 

thickness in cryoprotectant (30% sucrose, 30% ethylene glycol in 0.1M phosphate buffer) and 

stored at -20°C until immunostaining. Every sixth section was stained for glial fibrillary acid 

protein (GFAP) and ionized calcium-binding adapter molecule 1 (IBA-1) to assess global 

activation of astrocytes and microglia, respectively. Briefly, brain sections were washed of 

cryoprotectant and placed into primary antibody for GFAP (Millepore , Billerica, MA; AB5804; 

1:4000 dilution) or IBA-1 (Wako Chemicals USA, Richmond, VA 016-20001, 1:5000) for 24 

hours. For GFAP, tissue was then placed into biotinylated secondary antibody (Vector Labs, 

Burlingame, CA; BA1000; 1:200 dilution) for 1 hour and the stain was visualized using 3-3’-

diaminobenzidine (DAB). For IBA-1, tissue was placed into fluorescently-label secondary (Life 

Technologies, Grand Island, NY, A-11012; 1:400 dilution). Immunolableled tissue was mounted 

onto Superfrost Plus micro slides (VWR, Radnor, PA, 48311-703) and coverslipped using 
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Cytoseal 60 (for chromogenic tissue; Fisher Scientific; Pittsburg, PA; 23-244257) or ProLong 

Gold Antifade Reagent (Life Technologies, Grand Island, NY, P36930). 

Three images of each of following brain regions were obtained: corpus callosum, cortex, ventral 

midbrain, dentate gyrus, hippocampus (CA1/CA2), and striatum. Relative immunoreactivity was 

determined using Image Pro Plus 7.0 (MediaCybernetics, Rockville, MD). All images underwent 

contrast enhancement prior to utilization of the count/size method. Briefly, immunoreactive cells 

on 2-3 sections per brain region were enumerated using count/size feature of Image Pro Plus 7.0 

across 3 equally sized fields per brain region modified from Cao et al. (2012). Data is reported as 

percent of time point- and sex-matched control. 

Lateral ventricle and Aqueduct of Sylvius area determination    

The area of the lateral ventricles (Approximate Bregma range 1.10 mm-0.38 mm) and Aqueduct 

of Sylvius (Approximate Bregma range: -3.88 - -4.84 mm) was determined by tracing the outline 

of the area of interest in at least 4 adjacent sections of slide-mounted brain using Neurolucida 

(MBF, Villiston, VT). Software enumerated the area of interest area in µm2. Lateral ventricle 

bregma for the PND14 brains are approximate given that, to the knowledge of the authors, no 

atlas at that point in early postnatal brain development exists. To examine persistence of CAPS-

induced lateral ventricle dilation male mice, ventricle area was quantified in another group of 

identically but not concurrently exposed males from brain harvested at approximately PND270. 

Unlike the mice from which brains were obtained at PND14 and 55, mice from which PND270 

tissue were harvested had undergone behavioral testing (reported in Allen et al 2014a). 
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Neurotransmitters quantification   

Briefly, brains were extracted and dissected on an ice-cold plate into the following regions: 

olfactory bulb, hippocampus, midbrain, striatum, hypothalamus, cerebellum, and cortex. High 

performance liquid chromotography coupled with an electrochemical detector (for monoamines) 

or a fluorescent detector (for amino acids) was used to quantify dopamine (DA), 3,4-

dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), norepinephrine (NE), 

serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), glutamine (GLN), glutamate (GLU), 

and γ-aminobutyric acid (GABA), expressed as ng/mg protein. Dopamine turnover was 

calculated as [DOPAC]/[DA]. Method details are published elsewhere (Cory-Slechta et al. 2013; 

Cory-Slechta et al. 2004; Virgolini et al. 2008). 

Cytokines   

Interleukin 1-beta (IL-1β), tumor necrosis factor-alpha (TNFα), and interleukin-6 (IL-6) in the 

striatum, hippocampus, olfactory bulb, midbrain, cortex, and cerebellum were quantified using 

custom multi-plex plate-based chemiluminescent ELISA (Quansys Biosciences, Logan, UT). 

Briefly, tissue was quickly sonicated in 0.1M PBS, pH 7.4 containing 1% protease inhibitor 

cocktail (Sigma, St. Louis, MO; P8340). 25 µL of brain homogenate was loaded per well and 

were run in duplicate according to manufacturer’s instructions. The chemiluminescent signal was 

visualized using the Q-view Imager and analyzed using Q-View Software (Quansys Biosciences, 

Logan, UT). Cytokine levels were normalized to total protein content of the same region as 

determined by the bicinchoninic acid method. 
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Statistical analyses    

Statistical analysis was carried out using JMP10 (Cary, NC). Lateral ventricle dilation is 

characterized by a statistical interaction of postnatal CAPS x sex (see results) and thus all 

statistical analyses were separated by sex and used two-way ANOVAs with age of sacrifice and 

treatment group as the independent factors. Fisher’s LSD post hoc analysis was used in the event 

of age of sacrifice by treatment interaction. All analyses were performed as two-tailed tests and 

p<0.05 is considered statistically significant. 

Results  

Mice were exposed from postnatal day (PND) 4-7 and 10 -13 for 4 hrs/day between hours 0700-

1200, times corresponding to peak vehicular traffic and particle concentration levels near the 

intake valve. Mean CAPS count across the 8 days of postnatal exposure was approximately 

200,000 particles/cm3, and the mean particle mass concentration was 96 µg/m3 (Figure 1). 

Particles remained ultrafine (<100 nm diameter) for all exposure days (Figure 1 inset). 

To address the potential of CAPS to elicit immediate CNS effects and to determine the 

persistence of such effects, mice were euthanized at two times following cessation of exposure: 

PND14 (24 hrs post-exposure) and PND55 (young adulthood). Notably, CAPS-exposed male 

(TX x Sex interaction: F(1,32)=10.0559, p<0.01; main effect of CAPS treatment for males 

(F(1,16)=10.3298,p=0.0054), but not female (F(1,16)=0.2455,p=0.6270), mice had significantly 

enlarged lateral ventricles compared to air-exposed controls (Air: Figure 2a; CAPS: Figure 2b), 

an observation confirmed by determination of lateral ventricle area using Neurolucida (MBF 

Bioscience, Williston, VT) that quantitated increases of 380% and 178% at PND14 and PND55, 

respectively (Figure 2c). On PND14 only, a single CAPS-treated female showed enlarged lateral 
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ventricle as indicated by increased variability in figure 2c for CAPS-females at that time point; 

however, this effect failed to reach statistical significance. Lateral ventricle size in mice (sex 

unspecified) have been reported to increase out to 90 days of age, with more rapid growth up to 

about 40 days of age (Mandell et al. 2010), although separate determinations by sex reveal that 

males show a decline in area between 1 and 3 mos of age (Mandell et al. 2010). Figure 2a shows 

representative images of lateral ventricles of PND14 male air- (Figure 2a) and CAPS-treated 

(Figure 2b) animals at similar bregma. CAPS did not affect aqueduct of Sylvius (Figure 2c). To 

further evaluate persistence, brains from identically exposed males obtained at PND270 were 

subjected to ventricular tracing and increased lateral ventricle size confirmed by a two-tailed t-

test (p=0.04; Figure 2e,f). 

To assess CAPS-induced glial activation as a potential mechanism of neurotoxicity, sections 

were immunostained for GFAP and IBA-1, markers for astrocytes and microglia, respectively. 

CAPS altered astrocyte state in a sex- and regionally-dependent manner (Figure 3 panels A-C). 

Data is presented as percent time point- and sex-specific filtered air control values. In males, 

CAPS reduced GFAP immunostaining in the corpus callosum (main effect of CAPS: 

F(1,15)=4.5986, p=0.048), at both PND14 and PND55, while reductions in GFAP 

immunoreactivity in hippocampus occurred only at PND14 (time point x treatment interaction; 

F(1,15)=5.200, p=0.0376, p<0.05) (Figure 3, panels A and C). In contrast, females showed 

increases in GFAP in hippocampus (CAPS by time point: F(1,16)=9.1589,p=0.008), corpus 

callosum (CAPS by time point: F(1,16=5.8066, p=0.0284), and anterior commissure (CAPS by 

time point: F(1,16)=12.76, p=0.018) (Figure 3, panels B and C), that were restricted to PND14 

relative to PND14 air-treated females ( all p values <0.05), but not at PND55, indicating a 
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transient astrocytic response to CAPS present on PND14 that resolved by PND55. Data was also 

normalized to sex-specific PND14 filtered air control to allow for examination of trajectory of 

GFAP changes across the study period (see Supplemental Material, Figure S1). 

CAPS altered IBA-1 immunostaining in the anterior commissure and hippocampus only in males 

(Figure 3, panels D and E). Data is presented as percent time point- and sex-specific filtered air 

control. Despite the larger increase at PND14, statistical analyses indicated that CAPS increased 

IBA-1 immunostaining (approximately 25%) in the anterior commissure at both time points 

(main effect of CAPS: F(1,15)=5.75, p=0.03), indicating persistent microglial response in the 

white matter. In contrast, CAPS increased IBA-1 immunoreactivity in hippocampus only at 

PND55 (CAPS by time point: F(1,15)=4.8791, p=0.043) relative to air-treated controls (p<0.05). 

Data was also normalized to sex-specific PND14 filtered air control to allow for examination of 

trajectory of IBA-1 changes across the study period (see Supplemental Material, Figure S2). 

CAPS modified CNS neurotransmitter levels in a sex- and regionally-dependent manner. CAPS 

increased hippocampal glutamate (F(1,26)=5.5383, p=0.0246), midbrain DA TO 

(F(1,26)=6.6590, p=0.0159), and cortical DA TO (F(1,18)=8.4456, p=0.0106) in males at both 

time points (Table 1). CAPS increased cortical NE in males only at PND 55 (CAPS by time 

point: F(1,26)=5.13, p=0.03) (Table 2). No treatment-related differences in CNS 

neurotransmitters were observed in olfactory bulb, or hypothalamus nor in DA, DOPAC, HVA, 

5-HT, or 5-HIAA in midbrain, striatum, cortex, or hippocampus (not shown). 

In females, CAPS reduced hippocampal GABA (F(1,28)=4.22, p=0.049), but increased midbrain 

HVA (F(1,29)=4.92, p= 0.035) and DA (F(1,29)=6.9, p=0.013) and hippocampal serotonin 

(F(1,29)=6.46, p=0.017) at both time points (Table 2). Additionally, cortical NE was increased 
11 
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only at PND55 (CAPS by time point: F(1,29)=6.37, p= 0.017), while hippocampal DA TO 

(CAPS by time point: F(1,26)=4.90, p=0.036) was increased, and midbrain DA TO reduced 

(CAPS by time point: F(1,29)=9.52, p = 0.004) only at PND14. No treatment-related differences 

in neurotransmitters in the olfactory bulb, cerebellum, or hypothalamus were observed (not 

shown). 

In males, reductions in hippocampal IL-6 (F(1,28)=4.69, p=0.039), and in striatal IL-1β 

(F(,1,28)=6.48, p= 0.017) and TNFα (F(1,28)=5.00, p=0.033) were observed at both time points, 

with a similar trend in hippocampal IL-1β (F(1,28)= 3.59, p= 0.069) (Table 1). Hippocampal 

glutamate in CAPS-exposed males was positively correlated with hippocampal IL-1β (r2=0.233, 

p=0.039) and IL-6 (r2=0.361, p=0.01). In males, midbrain IL-1β (CAPS by time point: 

F(1,28)=4.76, p=0.038) and TNFα (CAPS by time point: F(1,28)=5.448, p=0.027) were reduced 

at PND14, but increased at PND55 (all p values <0.05) (Table 1). No treatment-related 

differences in central cytokines were observed in male olfactory bulb or cerebellum (not shown). 

In females, CAPS reduced cortical IL-6 at PND55 (CAPS : F(1,18)=5.78, p=0.027) while 

increasing midbrain IL-6 (CAPS by time point: F(1,28)=5.92, p=0.022) at PND55 (Table 2). IL-

6 in female cortex at PND14 was undetectable. Midbrain TNFα (F(1,28)=7.05, p=0.013) and IL-

1β (F(1,28)=6.65, p=0.016) were increased at both time points (Table 2) In contrast, striatal IL-6 

was increased at PND14, but not PND55 (CAPS by time point: F(1,28)=8.61, p=0.007, all post 

hoc p values <0.05) (Table 2). No treatment-related differences in cytokines were observed in 

olfactory bulb or cerebellum (not shown). 
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Discussion   

Mice were exposed to human-relevant levels of UFP. As indicated in Figure 1, the average 

particle count was approximately 200,000 particles/cm3. Ambient UFP counts near roadways in 

Los Angeles, California (Westerdahl et al. 2005) and Minneapolis, Minnesota (Kittelson 2004) 

have been reported as high has 200,000 and 400,000 particles/cm3, respectively, with peak 

episodic counts reaching 2,000,000 particles/cm3 in Minneapolis (Kittelson 2004). 

CAPS induced a persistent dilation of the lateral ventricles, but not the aqueduct of Sylvius, 

preferentially in males. Lateral ventricle dilation is a predictor of poor neurodevelopmental 

outcome (Laskin et al. 2005; Tatli et al. 2012). It has been associated with multiple 

developmental CNS disorders, including autism and schizophrenia (Barttfeld et al. 2011; Bigler 

1987; Fannon et al. 2000; Movsas et al. 2013; Sanfilipo et al. 2000; Schulz et al. 1983; Wright et 

al. 2000), idiopathic mental retardation, periventricular leukomalacia (Volpe 2005; Volpe 2003; 

Volpe 2001), fragile X syndrome and attention deficit disorder and, in the absence of other CNS 

abnormalities, to developmental delays (Gilmore et al. 2001; Gilmore et al. 2008). Its 

consequences can include progressive hydrocephalus, gray matter migration abnormalities, loss 

of parenchymal brain tissue, agenesis of the corpus callosum (CC) and delayed or abnormal 

maturation of white matter, i.e. reduced myelin basic protein (MBP) expression, diminished total 

axon volume, trisomies and microcephaly (Bigler 1987; Gilmore et al. 1998; Gilmore et al. 2001; 

Gilmore et al. 2008; Griffiths et al. 2010; Kuban et al. 1999; Kyriakopulou et al. 2013, Manfredi 

et al. 2010). Ventriculomegaly is associated with such deficits, persists after birth (Gilmore et al. 

2001), and is more prevalent in males (Gilmore et al. 1998). Our observation of male-specificity 

of the lateral ventricle dilation is consistent with literature suggesting that males are more likely 
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to be diagnosed with a number of neurodevelopmental and neuropsychological disorders of 

childhood including autism, earlier on-set schizophrenia, attention deficit hyperactivity disorder, 

conduct disorder, and learning disabilities (CDC 2007; Kirkbride et al. 2012; Erskine et al. 2014; 

Boyle et al. 2011). While the mechanism(s) underlying the male-specificity of this effect are as 

yet undefined, they likely reflect sex differences in neurodevelopment such as the sex differences 

in microglial colonization of the brain seen already by PND4, at which time males show a more 

activated morphology (Schwarz et al. 2012), a possibility consistent with the observation that 

changes in IBA-1 were found only in males. Additionally, a single CAPS-exposed female 

appeared to show enlarged lateral ventricles at PND14 but considered across groups, these 

effects were not statistically significant, further suggesting male-specificity of the lateral 

ventricle dilation. However, future studies should address whether females may be rendered 

susceptible at higher particle concentrations or longer durations of exposure. Obstruction of the 

Aqueduct of Sylvius is a common mechanism of lateral ventricle dilation (James 1992) but was 

not seen here. Whether an earlier transient obstruction occurred cannot be ruled out, however. 

Future studies of a similar nature, should include utilization of repeated measures design in 

rodents exposed to CAPS. Use of magnetic resonance images (MRI) to track the trajectory of 

central ventricular system changes in the same animal across time would assist in illuminating 

the mechanism(s) by which such changes are induced by CAPS and may inform the sex-

dependency of this effect. Global patterns of glial changes in the brain indicate that females 

mount a transient astroctyic response, but no microglial response to CAPS exposure, while males 

show both microglial and astrocytic dysfunction that persist into early adulthood. 
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Our previous work indicates significant disruption of adulthood neurotransmission in response to 

CAPS in mice that at least persists to almost 1 year of age (Allen et al 2014a,b). To determine 

the etiological role of such disruption in CAPS-induced neuropathology, regional levels of DA 

and its metabolites DOPAC and HVA, NE, 5-HT and its metabolite 5-HIAA, as well as 

glutamate, glutamine, and GABA were examined. Notably, the sustained increase in 

hippocampal glutamate may indicate the contribution of an excitotoxic mechanism of CAPS that 

persists until early adulthood. Additionally, increased dopamine metabolism, as evidenced in our 

animals by increased DA TO, has been associated with oxidative stress (Cohen 1983; Graham 

1978; Hastings 1995; Schulz et al. 2000). Interestingly, loss of GABAergic neurons in the 

hippocampus, which is consistent with decreased hippocampal GABA observed in females here, 

has been implicated in both schizophrenia and bipolar disorder (Benes et al. 1998). Moreover, 

disrupted CNS neurotransmission is associated with both autism (Cook 1990) and schizophrenia 

(Grace 2012). 

Early cytokine changes were also sex- and brain-region dependent (Tables 1 and 2). In the 

female midbrain, IL-6 was increased only at PND55, whereas TNFα and IL-1β were persistently 

increased across both time points. IL-6 in the female striatum was increased at PND14 only. A 

protracted profile of changes, as observed for female midbrain IL-6 may indicate adverse effects 

on ontogeny of microglial development that later results in a neuroinflammatory profile, while 

increases restricted to PND14 only, such as observed for female striatal IL-6, likely indicate a 

transient neuroinflammatory response. 

Decreases, as opposed to increases, in male hippocampal IL-6 and striatal IL-1β/TNFα and in 

female cortical IL-6 were unanticipated, but perhaps suggest that microglia, a major source of 
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brain cytokines are dysfunctional or lost. Such cytokines have multiple important roles in the 

developing nervous system (Deverman and Patterson 2009), such that any alteration in brain 

cytokines during the early postnatal period would have deleterious effects on the CNS. Indeed, 

IL-1β, TNFα, and IL-6 have been implicated as having roles in synaptic plasticity in the 

hippocampus (Balschun et al. 2004; Goshen and Yirmiya 2009; Schneider et al. 1998), and can 

activate astrocytes that modulate synaptic plasticity. Furthermore, IL-1 receptor antagonist 

polymorphism was implicated in ADHD etiopathogenesis (Segman et al. 2002) and disrupted 

attention was observed in our male CAPS-exposed mice (Allen et al. 2013). Furthermore, 

hippocampal glu in CAPS-exposed males was positively correlated with hippocampal IL-1β/IL-

6, likely indicating a mechanistic link between excitotoxicity and neuroinflammtory response. 

IL-1β has previously been proposed as a bridge between neuroinflammation and excitotoxicity 

(Fogal and Hewett 2008). This correlation was absent in air-exposed control males and in 

females regardless of exposure group. 

Collectively these data show a dramatic susceptibility of male mice to environmentally relevant 

levels of early postnatal air pollution exposure, with effects that persist into adulthood and cause 

permanent neuropathology characterized by ventricular enlargement, a pathology not seen in 

females. Lateral ventricle dilation (ventriculomegaly), is a strong predictor of poor 

neurodevelopmental outcome in children and a pathological hallmark observed in both autism 

and schizophrenia. Thus, the current findings provide biological plausibility for the reported 

associations in epidemiological studies of air pollution with autism (Becerra et al. 2013; Volk et 

al. 2011; Volk et al. 2013), schizophrenia (Pedersen et al. 2004), and ADHD (Siddique et al. 
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2011) Moreover, the heightened sensitivity of males to CAPS effects parallels the greater 

prevalence of these disorders in males. 

Although CAPS-induced ventricular enlargement is not observed in females, CAPS-exposed 

females exhibit biochemical and neurochemical alterations that are nevertheless significant and 

represent protracted neurotoxicity in response to early postnatal CAPS exposure. Males and 

females show significantly altered neurochemical changes in multiple brain regions, including 

areas that comprise the mesocorticolimbic dopamine tracts, regions critical to cognition and 

attention. CAPS-exposed males have increased levels of major excitatory neurotransmitter 

glutamate in hippocampus, a sign of excitotoxicity in that region. CAPS-exposed females show a 

decrease in hippocampal GABA, the major inhibitory neurotransmitter of the CNS. GABA 

alterations in the hippocampus have been implicated in both schizophrenia and bipolar disorder 

(Benes and Berretta 2001). The functional/behavioral significance of these changes remains to be 

fully determined; however impairment in behaviors involving the hippocampus, such as learning 

and memory, would be predicted. These changes in neurotransmitters along the 

mesocorticolimbic pathway may underlie the increased preference for immediate reward 

observed in CAPS-exposed males that we previously reported (Allen et al. 2013). In interpreting 

these findings, inherent differences between murine and human brain development must also be 

considered. The early postnatal period in both humans and rodents is marked by substantial brain 

development; however, the exact nature of the development is different. As a rough estimate, rat 

brain development at PND7 has been equated to approximate brain development at birth in the 

human (Clancy et al. 2007), thus our exposure paradigm that occurred from PND 4-7 and 10-13 

in mice, in terms of neurodevelopment, probably best approximates what would be the perinatal 
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period in the human encompassing the timeframe shortly before and after birth. Taken together, 

these data suggest that exposure to CAPS in the early postnatal period, at human- and 

environmentally-relevant levels, may represent a far greater public health concern than has 

previously been recognized as a risk factor contributing to intractable neurodevelopmental 

disorders such as autism and schizophrenia. 
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Table 1. Neurochemical disruption and cytokine changes in hippocampus, cortex, midbrain, and striatum of CAPS exposed males. 

Exposure DA TO NE IL-1β TNFα IL-6 Glu 
Hippocampus 
PND14 

Air NA NA 3.36 ± 0.77 NA 0.58 ± 0.15 41.57 ± 1.46 
CAPS NA NA 2.39 ± 0.52 NA 0.35 ± 0.09 52.47 ± 4.80 

PND55 
Air NA NA 2.76 ± 0.16 NA 0.61 ± 0.05 52.27 ± 2.92 
CAPS NA NA 2.09 ± 0.24 NA 0.45 ± 0.07 54.85 ± 3.03 

Overall Effects NA NA TX NA TX TX 
Cortex 
PND14 

Air 22.35 ± 7.11 3.29 ± 0.17 0.97 ± 0.13 NA NA NA 
CAPS 47.47 ± 21.16 3.29 ± 0.09 0.74 ± 0.06 NA NA NA 

PND55 
Air 3.43 ± 0.93 7.61 ± 0.31 2.71 ± 0.48 NA NA NA 
CAPS 6.45 ± 1.57 8.82 ± 0.31* 1.70 ± 0.20 NA NA NA 

Overall Effects TP, TX, TP x TX TP, TX, TP x TX TP, TX NA NA NA 
Midbrain
PND14

Air 4.26 ± 0.28 NA 20.33 ± 4.50 3.47 ± 0.76 NA NA 
CAPS 5.75 ± 0.62 NA 10.23 ± 0.911* 1.80 ± 0.15* NA NA 

PND55
Air 1.01 ± 0.13 NA 19.99 ± 1.86 3.38 ± 0.29 NA NA 
CAPS 1.23 ± 0.20 NA 27.85 ± 6.710* 4.90 ± 1.12* NA NA 

Overall Effects TP, TX NA TP, TP x TX TP, TX x TX NA NA 
Striatum
PND14

Air NA NA 2.11 ± 0.37 0.93 ± 0.23 NA NA 
CAPS NA NA 1.57 ± 0.24 0.52 ± 0.11 NA NA 

PND55
Air NA NA 1.39 ± 0.30 0.20 ± 0.04 NA NA 
CAPS NA NA 0.53 ± 0.11 0.10 ± 0.02 NA NA 

Overall Effects NA NA TP, TX TX NA NA 
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Table 2. Neurochemical disruption and cytokines changes in hippocampus, cortex, midbrain, and striatum of CAPS exposed females. 

Exposure DA TO NE DA HVA 5-HT IL-1β TNFα IL-6 GABA 
Hippocampus
PND14
Air 72.26 ± 15.97 NA NA NA 8.65 ± 0.49 NA NA NA 3.68 ± 0.10 
CAPS 99.94 ± 8.45* NA NA NA 9.21 ± 0.53 NA NA NA 2.81 ± 0.35 

PND55
Air 18.32 ± 5.68 NA NA NA 22.46 ± 1.34 NA NA NA 4.87 ± 0.45 
CAPS 13.64 ± 2.44 NA NA NA 28.30 ± 1.33* NA NA NA 4.23 ± 0.32 

Overall Effects TP, TP x TX NA NA NA TP, TX, TP X TX NA NA NA TP, TX 
Cortex
PND14
Air NA 3.46 ± 0.24 NA NA NA NA NA n.d. NA 
CAPS NA 3.54 ± 0.13 NA NA NA NA NA n.d. NA 

PND55
Air NA 8.27 ± 0.23 NA NA NA NA NA 0.36 ± 0.08 NA 
CAPS NA 7.25 ± 0.201* NA NA NA NA NA 0.18 ± 0.028* NA 

Overall Effects NA TP, TX, TP x TX NA NA NA NA NA NA NA 
Midbrain
PND14
Air 5.85 ± 0.69 NA 1.83 ± 0.17 5.40 ± 0.33 NA 11.50 ± 2.07 2.13 ± 0.32 1.55 ± 0.31 NA 
CAPS 3.83 ± 0.40* NA 2.81 ± 0.25 6.51 ± 0.39 NA 13.27 ± 1.89 2.39 ± 0.24 1.56 ± 0.23 NA 

PND55
Air 1.34 ± 0.11 NA 2.19 ± 0.18 2.30 ± 0.16 NA 14.95 ± 1.45 2.72 ± 0.24 2.34 ± 0.26 NA 
CAPS 1.29 ± 0.08 NA 2.37 ± 0.21 2.28 ± 0.13 NA 27.72 ± 3.12 4.77 ± 0.49 4.84 ± 0.588* NA 

Overall Effects TP, TX, TP x TX NA TX TP, TX NA TX TP, TX TP, TX, TP x TX NA 
Striatum
PND14
Air NA NA NA NA NA NA 0.19 ± 0.02 0.40 ± 0.14 NA 
CAPS NA NA NA NA NA NA 0.13 ± 0.019* 0.15 ± 0.034* NA 

PND55
Air NA NA NA NA NA NA 0.11 ± 0.02 0.05 ± 0.01 NA 
CAPS NA NA NA NA NA NA 0.12 ± 0.02 0.07 ± 0.01 NA 

Overall Effects NA NA NA NA NA NA TP, TX, TP x TX TP, TX, TP x TX NA 
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Dopamine turnover (DA TO), Norepinephrine NE), Dopamine (DA), Homovanillic Acid (HVA), Serotonin (5-HT), Interleukin-1β (IL-1β), 

Tumor Necrosis Factor α (TNFα), Interleukin-6 (IL-6), and γ-aminobutyric acid (GABA). Data reported as group mean ± SE. Monamines (DA 

TO, NE, DA, HVA, and 5-HT) reported in ng/mg protein, amino acids (GABA) reported in µg/mg protein, Cytokines (IL-1β, TNFα, IL-6) 

reported in pg/mg protein). (n=8-12 animals/treatment/time point). * indicates statistical difference (p<0.05) from time point-specific air control. 

TP and/or TX indicate statistical main effect of time point and/or treatment, respectively. TP x TX indicates statistical interaction. 
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Figure legends  

Figure 1. Mean particle counts (left axis) and particle mass concentration (right axis) ± SD for each day 

of exposure. Mean diameter (inset) ± SD for each day of exposure. 

Figure 2. Images of male lateral ventricle in Air-exposed (A) and CAPS-exposed (B) male mice from at 

PND14 (scale bar is 10 µm) or approximately PND270 (scale bar is 100µm) after exposure (D and E, 

respectively). Quantification of lateral ventricle on PND14, 55, and 270 (C/F) and Aqueduct of Sylvius 

area on PND14 and 55 is below (C). Data reported as group mean area ± SE. (n=5 

animals/sex/treatment/time point). TX indicates main effect of CAPS treatment*indicates results of two-

tailed t-test, p<0.05. 

Figure 3. Representative Images of GFAP Immunoreactivity in males (A) and females (B) in the corpus 

callosum and hippocampus of Air- and CAPS-exposed mice at PND14 with relative quantification in 

those regions and the dentate gyrus, cortex, midbrain, striatum, and anterior commissure immediately 

adjacent (C). Images of IBA-1 immunoreactivity in anterior commissure at PND14 and hippocampus of 

male mice at PND55 (D) with relative quantification immediately below (E). Data reported as percent 

sex-specific control by time point ± SE. (n=5 animals/sex/treatment /time point). Bar=50 µm. TX 

indicates main effect of CAPS treatment and TP x TX indicates statistical interaction between CAPS 

treatment and time point. * indicates statistically different (p<0.05, two-tailed) from time point- and sex-

specific control. 
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